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Abstract—Almost all of DNS queries that traverse Internet are
transported via UDP in self-contained small packages. Therefore,
with no restriction of packet ordering, the intuition would say
that adding thread-parallelism to the servers will increase their
performance, but it does not.

This paper study the problem of serialization accesses to
UDP sockets, and states the problem in the way the packets
are enqueued in the socket at kernel level, which introduces
high levels of contention in synchronization primitives for thread
using. As a naı̈ve solution, we present a multi-queue receiver
network stack which improves the performance of processing
UDP small packages when multiple threads read from the same
socket.

I. INTRODUCTION

With the growing of Internet the efforts in research and
development has been focused in manage and communicate
high amount of (big) data. Some of these efforts included the
use of parallel computing (threads) in server-side softwares,
aiming to adapt the server to the steadily growing demand.

Nevertheless, Facebook [10] and Toshiba [8] have showed
that introducing threads to server-side applications, such as
memcached and BIND respectively, do not necessarily imply
a gain in the number of queries the server is capable to
handle per time unit. Their engineers stated the problem inside
the Linux kernel (which was the Operating System used in
both studies), but leaving the analysis to later works, due its
complexity.

The same behavior has been analyzed by the engineers
of MOSBENCH Project, by performing benchmark tests with
well-known non-scalable applications (such as memcached and
Apache) [4]. The results of these tests showed that many
optimizations can be done in the application itself, but some
other servers might be bottlenecked by the I/O operations. A
further analysis testing scalable and non-scalable lock types
in Linux kernel, led the team to conclude that “traditional
kernel designs might be compatible with achieving scalability
on multicore computers”. Moreover, these results explained
mathematically and experimentally that the use of non-scalable
locks may yield in whole system performance collapse.

Above studies lead to suspect in the Operating System as
the root of the problem, which is not able to provide a scalable
interface for network communications. Thus, a completely
scalable network stack would solve the performance issues
already observed.

Our main contribution is the study of this non-scalable-
threads issue in recent versions of Linux kernel is state the
problem in the way packets are enqueued in the socket,
which introduces high levels of contention in synchronization
primitives due threads. We also provide a naı̈ve solution based
in multiples queues per socket, intended for servers whose
queries are small and self-contained in unique packets, such
as DNS Servers. We show that this solution improves the
performance of parallel-thread reads from a socket.

This article is organized as follows: Section III shows a
small introduction to how Operating Systems receive a packet
from the network. Section IV reproduces the problem, and
states it inside the kernel. Section V studies the spinlocks used
by the socket to enqueue the incoming packet right after these
have been processed through the network stack, and states the
problem in the synchronization schema used by data structures.
Finally, an implementation of a solution for DNS services is
presented, followed by our conclusions and future work.

II. RELATED WORK

The impact of locking in multithreaded network proto-
cols has been studied since around 20 years. For instance,
Björkman and Gunningberg [2] studied the effects of locking
systems in the implementation of UDP and TCP over IP and
ETH protocols in the x-kernel emulator, previously presented
by Hutchinson and Peterson [7]. Björkman and Gunning-
berg also implemented a parallel version of this emulator,
measuring the performance gain achieved by using multiple
processors when processing incoming and outgoing packets.
This measurements also lead them to identify some bottlenecks
inside x-kernel such as, for instance, copying information from
device to kernel memory.

The above work was extended by Nahum et. al. [9], running
a parallel version of x-kernel in Sillicon Graphics multipro-
cessors and analyzing the effects of checksumming, ordering
and locking in parallel TCP implementation. They conclude
that a simpler locking system and the use of atomic primitives
can make a big difference in performance, which pursues to
avoid at maximum the contention created by locking.

These studies were continued with measurements made by
Schmidt and Suda [11] in SunOS using ASX Framework.
They emulated two types of message parallelism architectures:
connection and message-based. They conclude that a message-
based parallelism is more suitable for connectionless applica-



tions, such as DNS Servers. Moreover, they state that syn-
chronization costs have a substantial impact in performance,
thus selecting the incorrect synchronization primitive would
decrease significantly the throughput obtained.

More recently, Willman et. al. [12] studied the effects
of connection-based parallelism implemented by default in
FreeBSD Operating System, measuring the throughput and
scalability in the system and how these metrics are influenced
by locking, cache behavior and scheduler overheads. These
measurements allowed them to conclude that a uniprocessor
version of FreeBSD kernel degrades its performance as long
as additional connections are added.

In the same line, Han et. al. proposed MegaPipe, an API for
Scalable Network I/O [6]. This new API allowed some server
softwares (like memcached and nginx) to reach up to 75%
of gain in throughput. Moreover, they found that message-
oriented connections with small messages incur in greater
overheads that connections with larger messages. A typical
example of these kind of services is DNS, which runs over
UDP with small-sized queries.

In our work, we aim to extend the research previously done
by studying the Linux Kernel, in order to isolate the root of the
serialization accesses to UDP sockets previously observed by
Toshiba when trying to scale BIND server. This is commonly
identified as the sign of non-scalable I/O operations when
adding threads to listen in a single open UDP socket.

III. LINUX NETWORK STACK WORKING

Sending or receiving a packet through network devices
involves a big amount of processing before being sent or
after arrived to the host. In this chapter we will explain the
mechanism used by Linux when a packet is sent to the network
or received from it.

Sockets in Linux are a kernel data structure consisting in:
a state field, a type field, a flags field, a pointer to an instance
of struct proto_ops (containing pointers to functions
which implement sockets’ operations) and a pointer to a
struct sock instance. This last structure is relevant to
this study, because it defines fields related with reception and
transmission of packets:

• A structure socket_lock containing a spinlock used
to lock the entire socket.

• Three packet queues (reception, transmission and back-
log) used to store packets before being sent (in case of
transmit information to other host) or after received (in
case of incoming packets from the network). Backlog
queue is used in special cases where the receiving queue
is locked, and its working will be explained in section
V-A. Each one of these lists is protected by a spinlock
which guarantees its consistency against concurrent ac-
cesses.

• Memory Accounting fields used to keep track of the
amount of memory being used by the socket and, spe-
cially, the amount of data in the queues. This feature is
used to avoid the socket fill up the entire memory, leading
to Operating System malfunction.

A. Packet Receiving

Figure 1 represents the main tasks performed by Linux when
a packet arrives to the Network Interface Card (NIC). The
process is performed in the figure from bottom to top.
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Fig. 1: Packet receiving process

Three main tasks can be identified in the process: (1) IRQ
Context, started when the packet arrives to the NIC, raising a
Hardware Interruption (HardIRQ) and ended with the schedule
of a Software Interruption (SoftIRQ); (2) Lower Process-
ing, consisting in the execution of the SoftIRQ previously
scheduled, which process the packet through Layers 2 (L2)
to 4 (L4); and (3) Upper Processing, where the packet is
enqueued in one of the socket’s queue prior to being read
by the application. This design is intended to minimize the
time spent by the processors handling HardIRQs, deferring
the biggest part of the work for a future instant[1].

In the following sections we will study how the synchro-
nization primitives can impact in the general performance of
receiving a packet. Further information and details about how
the packet is processed in each step when transmitting and
receiving packets can be found in [1], [13].

B. Memory Accounting

Each time some information is sent or received by the
kernel, it has to be copied into kernel’s memory in order to be
preprocessed before being sent through the device or read by
the user. Linux limits the amount of memory a single socket
can use to store packets inside the kernel, avoiding scenarios
where packets overflow kernel’s memory.

This feature is known as Memory Accounting for sockets. In
the special case of UDP, it was cloned directly from the TCP
implementation, including the locking system used to keep the
data consistent. This extra synchronization introduced a new
spinlock in the sockets, which raised UDP latencies especially



when using this protocol with multicast. This behavior was
observed by the community, who developed patches to the
kernel in order to deactivate Memory Accounting for UDP
sockets [5].

IV. UDP PERFORMANCE IN LINUX

As a first step, we measure the actual performance of UDP
sockets against concurrent read accesses. To achieve this goal,
we must isolate the portion of code we want to test.

Linux provides the loopback virtual interface as a simple
way to communicate two applications in the same machine, us-
ing the network stack and with the advantage of avoiding any
overhead introduced by HardIRQs. This last reason combined
with the goal of analyze only network’s stack performance,
lead us to select loopback interface to measure the time spent
and performance of network stack’s code. In addition, and as
a reference point, we compare the UDP socket performance
against a kernel FIFO queue provided by the mkfifo tool.

In order to stress the structures and determine its behavior
in parallel scenarios, concurrent reads will be performed with
no synchronization between application threads, thus time
measurements will represent the behavior of each source in
a scenario where the amount of threads exceeds the amount
of processors available of the system.

More in detail, we measured the amount of time required
to read 500.000 information units of 10 bytes each one,
simulating a constant incoming of small messages from a
client to a server; a common scenario for DNS servers. The
volume of reading threads in server-side will be doubled each
time, until the amount of available processors is exceeded,
simulating scenarios varying from a very small amount of
reading threads, up to others where reading threads overwhelm
processors. Both applications will run in the same machine,
using different mechanisms to transfer the information from
client to server: a UDP socket connected through loopback
interface and a FIFO queue created in the file system. For
these tests, we used a Dell Optiplex 990, Intel Core i5-2400
processor (4 logic cores) and 8 GB DDR3 RAM with different
Linux Kernel versions, which were included with some Ubuntu
distributions.

Figure 2 shows the average time measured (in seconds) for
FIFO Queue and UDP socket in each test. By observing our
results, we can see that adding threads to read concurrently
on both structures lead to a rise in execution time in all
kernel versions. In other words, adding threads to applications
which read concurrently from a single FIFO queue or UDP
socket does not introduce any performance gain; moreover,
both sources behave like an scenario where there is a single
processor and reads are handled one at time. It is important
to notice that newer versions show worse absolute times than
older ones, but display a more thread-tolerant performance
against concurrent accesses: when adding concurrent accesses,
execution times in newer kernel versions does not increase as
quick as it does in older ones. We can remark that, in the
special case of the UDP socket, all kernels belonging to 3.X
family present higher time values than 2.6 family, potentially

due to Memory Accounting, feature which was introduced in
version 2.6.25.

A. System Calls overhead

As we stated before, this work aims to determine the
performance of network stack by itself, therefore any overhead
introduced by system calls (and libc) should be considered
in this analysis. However, the design of Linux System Calls
suggests us that they are handled and executed in the same
processor they are issued and, therefore, would not interfere
with parallel performance. This fact leads us to consider this
overhead as a constant value in each processor, since the scope
of this work is analyze the scalability of network stack rather
than make a detailed profiling of Linux Network API.

V. KERNEL ISOLATION

From previous section we could infer that the bottleneck is
within Linux kernel, therefore we analyzed in detail how a
packet is received by the kernel to check if our hypothesis is
right.

A. Packet Reception Analysis

As we stated in section III, the reception process of a packet
is composed of three main sub-processes: (1) Rise a HardIRQ
and schedule the execution of a SoftIRQ, (2) Execution of the
SoftIRQ and process the packet through network stack, and
(3) Enqueue the packet in a socket queue.

The first and second are highly parallelized, being the first
one asynchronously triggered by the NIC in one processor
[1], [3] and the second one completely parallelized due the
use of Software interruptions, allowing code reentrancy in the
network stack [1], [3], [11], [12]. Is the third one then (the
enqueuing process), where a serialization could be located, and
it will be analyzed deeper due it consists, basically, in modify
a shared data structure in the kernel.

When a packet has finished its journey through the network
stack it has to be enqueued in the receiving or backlog queue
following the next logic (represented in Figure 3) from left to
right:

1) Lock the entire socket by locking the global spinlock of
the structure (red instance). This does not allow other
SoftIRQs to enqueue other packets concurrently.

2) Check whether the lock is being used by some user-
space application or not. If it is, the packet is directly
enqueued in the backlog queue (ensuring its consistency
with its respective spinlock, the blue one in Figure 3) and
jump to the next step. If the socket is not locked by the
user, then, (1) the packet is processed through netfilter,
(2) Memory Accounting statistics are updated, (3) the
packet is enqueued in the receive queue (protected by
with its own spinlock, green instance in Figure 3) and,
(4) the system scheduler is invoked in order to wake up
any asleep task waiting for data in the socket.

3) Finally, release the global socket spinlock, allowing
other packet to be enqueued following this same logic.



Fig. 2: Time measured in processing 500, 000 packets for 1, 2, 4, 8 processing threads

From the other side, when the application tries to read
data from the socket, it executes a similar process, which is
described below and represented in Figure 3 from right to left:

1) Dequeue one or more packets from the receive queue,
using the corresponding spinlock (green one).

2) Copy the information to user-space memory.
3) Release the memory used by the packet. This potentially

changes the state of the socket, so two ways of locking
the socket can occur: fast and slow. In both cases, the
packet is unlinked from the socket, Memory Accounting
statistics are updated and socket is released according to
the locking path taken.

Due the process of enqueueing a packet might change the

state of the socket, the kernel must avoid any race conditions
with other threads by introducing two socket locking ways as
stated before. The fast way occurs when no other thread is
changing the socket state, and consists in holding the socket
global spinlock, which deactivates bottom half controllers and
avoid any other concurrent insertion of packets in the queue
After the memory used by the packet is releases, this spinlock
is released in order to allow other extractions. In contrast, the
slow way occurs when other thread is handling the socket
state, therefore dequeueing packets would conflict with other
threads handling the socket state, especially at the moment
of update Memory Accounting statistics. In this last case the
calling thread will re-schedule its execution until the state lock
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Fig. 3: Packet dequeing and enqueueing process

is released.

B. Socket Spinlocks Statistics

The analysis presented before suggests that two points might
be serializing the concurrent accesses to the socket: the global
spinlock of the socket or the spinlock used to maintain consis-
tent the socket’s receiving queue. This two instances are tested
by running the same stressing tests for UDP sockets used in
Section IV, collecting statistics about them with lockdep Linux
kernel tool. This data collected include information about
contentions, acquisition, total waiting time and total locking
time.

In order to test the influence each spinlock has in the
bottleneck, two scenarios will be tested: an unmodified 1 kernel
and another one patched to Memory Accounting, and thus
disabling socket’s global spinlock. Both compilations were
built using version 3.12.5 as base.

Table I1 and Table II 1 shows held and wait average times
for each spinlock in study: list and global socket spinlock. We
can see that even in scenarios with one application thread, both
spinlocks show wait time and hold time. A simple explanation
of this is the fact that even with just one extraction from socket,
the kernel might be running many SoftIRQs processing and
enqueuing packets in the socket, generating contention in both
synchronization primitives.

1Kernel code was modified just to add a lockdep class to socket global
spinlock, used by lockdep to collect statistical information about it. This was
done due the lack of this characteristic in the original code.

1For Tables I, II and III, head columns has the following meaning:
• Htime-total: Total amount of time the lock was held during the mea-

surement.
• Acquisitions: The total number of times the spinlock was acquired.
• Htime-avg: The average time the lock was held. This value is derived

from two above.
• Wtime-total: Total amount of time the lock was locked by a thread

during the measurement.
• Contentions: The total number of times the spinlock contended a thread

to wait for the lock.
• Wtime-avg: The time a thread had to wait for this lock.

As soon as we have more than one thread, we see a slight
rise in the average time the global spinlock is held, due
synchronization is required to maintain consistent the socket.
Furthermore, this value seems to remain almost constant when
adding even more threads. The same effect can be observed
in the wait times for the same spinlock, suggesting that
contention is occurring in that point. In the particular case
of the queue spinlock, we can see no increment in held nor
wait time for that instance when raising the number of threads,
which suggests the use of that spinlock is correct.

Table III1 shows the results for the list spinlock in the
kernel where Memory Account was deactivated. We can see
a slight increase in both hold and wait average times and
an appreciable increment in the contentions generated by this
lock. This is explained by the fact that list spinlock is now the
unique synchronization point in the schema, therefore every
access to the socket is contended in order to avoid a race
condition in the packet queue. However, this results show that
this is not the solution of the performance issue presented in
this work.

In Figure 3 we present two methods to lock the socket
from the user side, and each one has different effects on the
control of execution. Fast path disables bottom half controller
(formally SoftIRQs) by locking socket spinlock (the red one),
which does not allow the enqueue of new packages neither
in the backlog nor receive queue. In the case that another
thread is modifying the state of the socket, the slow path is
taken, where the use call is delayed until the global socket
lock (the red one) is released by the other thread. Moreover,
if this spinlock is disabled (by disabling Memory Account),
synchronization point will remain in the receive and backlog
queues (green and blue spinlocks), as showed in Table III when
that feature was turned off.

This fact suggests that the enqueueing schema of the sockets
is the bottleneck we are looking for: the linked list used as
packet queue does not allow concurrent extractions, serializing
the accesses.If concurrent accesses to a socket would like to be



TABLE I: Receive queue spinlock results, Memory Accounting enabled

Threads Htime-total [ms] Acquisitions Htime-avg [ms] Wtime-total [ms] Contentions Wtime-avg [ms]
1 241,739.56 1,498,456 0.16133 14.69 72 0.20403
2 491,475.11 3,000,009 0.16382 83.76 427 0.19616
4 999,715.69 6,001,903 0.16657 193.33 956 0.20223
8 2,001,099.30 12,002,304 0.16673 300.51 1,479 0.20318

TABLE II: Global socket spinlock results, Memory Accounting enabled

Threads Htime-total [ms] Acquisitions Htime-avg [ms] Wtime-total [ms] Contentions Wtime-avg [ms]
1 1,727,674.73 1,000,102 1.72750 122.21 222 0.55050
2 3,546,050.22 2,000,037 1.77299 1,417.54 1,235 1.14781
4 7,253,937.17 4,000,143 1.81342 3,163.35 2,576 1.22801
8 14,511,741.72 8,000,053 1.81396 5,301.16 4,281 1.23830

TABLE III: Receive queue spinlock results, Memory Accounting disabled

Threads Htime-total [ms] Acquisitions Htime-avg [ms] Wtime-total [ms] Contentions Wtime-avg [ms]
1 475,795.94 1,995,714 0.23841 173.13 543 0.31884
2 983,877.62 4,000,453 0.24594 677.32 1,743 0.38859
4 1,988,615.96 8,004,417 0.24844 1,147.46 3,679 0.31189
8 3,976,472.06 16,007,064 0.24842 2,429.32 8,650 0.28085

performed, Memory Accounting has to be disabled (or at least
re-coded to be non-socket-blocking) and the data structure
used for packets must be replaced for another one which
support concurrent accesses.

VI. MULTIQUEUE RECEIVER NETWORK STACK

We propose a naı̈ve solution to address this problem, based
on the idea of allowing multiple concurrent threads to extract
packets from a single socket with the less synchronization
possible.

As we stated in Section III, a Linux socket is constituted
by a single receive queue, which does need synchronization
against concurrent accesses to avoid pointers inconsistency in
the data structure. Our proposal is a single socket with multiple
receiving queues in order to allow multiple insertions and
extractions at the same time. More specifically, the multiqueue
socket will have a receive queue for each processor available
in the machine, allowing threads to extract packets from the
queue that belongs to the processor which runs the thread.
This differs from reuse port flag introduced in Linux 3.9 in
the way that this approach allows a single socket to use a
queue per processor rather than use several sockets in a single
application. Moreover, this solution has the advantage of avoid
to rewrite every application in order to support reuse port.

Without going any further, we hypothesize that this ap-
proach will avoid most of the contention previously observed,
with the cost of being useful only in an architecture with
message-oriented parallelism. In other words, this solution will
only work with servers whose queries are each self-contained
in a single small packet, due our solution assigns each packet
to each queue in a round-robin schema.

To test if our hypothesis was right, we implemented a mul-
tiqueue receiver network stack in the Linux kernel, available
in http://github.com/niclabs/multisocket.

A simple performance test of processing 500, 000 packages
of 10 bytes (as in Section IV) can be sen in Figure 4, where

with a simple solution of a two-queues socket in the kernel
we increase the throughput for multiple thread accesses.
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Fig. 4: Time in kernel 3.12.5 using 2 cores

VII. CONCLUSIONS AND FUTURE WORK

We studied the actual performance of Linux UDP sockets,
and discovered that accesses to retrieve data from them are
serialized in the kernel.

Inside the kernel, we studied how the packet is received
and enqueued in a socket’s list and identified a possible
point of failure: two spinlocks, one protecting the queue from
concurrent accesses and the other used as a socket-wide lock
in order to be used with Memory Accounting. We collected
statistics over those spinlocks using lockdep, showing that
the contention on the global spinlock is the main part of the
problem, but deleting it will not solve the performance issues
observed.

Thus, we presented a naı̈ve queue solution for Linux kernel
that achieved best performance that the actual uni-queue
implementation. As future work we plan to study some other
parallel data structures that could achieve better performance

http://github.com/niclabs/multisocket


than our solution and/our that can preserve the order of the
packets aiming to use it in TCP-based protocols.
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